By Topic

An Improved Theoretical Model of n th-Order Cascaded Raman Fiber Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Qin Zujun ; Univ. of Electron. Sci. and Technol., Chengdu ; Zhou Xiaojun ; Li Qing ; Wu Haocheng
more authors

An improved analytical model is presented for the design of nth-order cascaded Raman fiber lasers (CRFLs) by considering the variation of Raman fiber effective core area with Stokes wavelength. Using this model, we determine the approximate optimal Raman fiber length and output-coupler (OC) reflectivity which make pump-to-Stokes conversion efficiency maximum. The output performance for a fifth-order Ge-doped CRFL calculated by our model is compared with the published experimental data, and good agreements between them have been found. Our calculated results show that losses, including gray losses of fiber Bragg gratings and splicing losses of fibers, have a significant effect on CRFLs characteristics, and the conversion efficiency is insensitive to the variation of Raman fiber length or reflectivity of OC near the optimal value.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 6 )