By Topic

MOUSETRAP: High-Speed Transition-Signaling Asynchronous Pipelines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Singh, M. ; North Carolina Univ., Chapel Hill ; Nowick, S.M.

An asynchronous pipeline style is introduced for high-speed applications, called MOUSETRAP. The pipeline uses standard transparent latches and static logic in its datapath, and small latch controllers consisting of only a single gate per pipeline stage. This simple structure is combined with an efficient and highly-concurrent event-driven protocol between adjacent stages. Post-layout SPICE simulations of a ten-stage pipeline with a 4-bit wide datapath indicate throughputs of 2.1-2.4 GHz in a 0.18-mum TSMC CMOS process. Similar results were obtained when the datapath width was extended to 16 bits. This performance is competitive even with that of wave pipelines, without the accompanying problems of complex timing and much design effort. Additionally, the new pipeline gracefully and robustly adapts to variable speed environments. The pipeline stages are extended to fork and join structures, to handle more complex system architectures.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:15 ,  Issue: 6 )