By Topic

The Development of Incremental Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pedrycz, W. ; Univ. of Alberta, Edmonton ; Keun-Chang Kwak

In this study, we introduce and discuss a concept of an incremental granular model. In contrast to typical rule-based systems encountered in fuzzy modeling, the underlying principle exploited here is to consider a two-phase development of fuzzy models. First, we build a standard regression model which could be treated as a preliminary construct capturing the linear part of the data and in this way forming a backbone of the entire construct. Next, all modeling discrepancies are compensated by a collection of rules that become attached to the regions of the input space where the error is localized. The incremental model is constructed by building a collection of information granules through some specialized fuzzy clustering, called context-based (conditional) fuzzy C-means that is guided by the distribution of error of the linear part of the model. The architecture of the model is discussed along with the major algorithmic phases of its development. In particular, the issue of granularity of fuzzy sets of context and induced clusters is discussed vis-a-vis the performance of the model. Numeric studies concern some low-dimensional synthetic data and several datasets coming from the machine learning repository.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:15 ,  Issue: 3 )