By Topic

Traceable 2-D Finite-Element Simulation of the Whispering-Gallery Modes of Axisymmetric Electromagnetic Resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Oxborrow, M. ; Nat. Phys. Lab., London

This paper explains how a popular commercially available software package for solving partial-differential-equations (PDEs), as based on the finite-element method, can be configured to efficiently calculate the frequencies and fields of the whispering-gallery (WG) modes of axisymmetric dielectric resonators. The approach is traceable; it exploits the PDE-solver's ability to accept the definition of solutions to Maxwell's equations in so-called weak form. Associated expressions and methods for estimating a WG mode's volume, filling factor(s), and in the case of closed (open) resonators, its wall (radiation) loss, are provided. As no transverse approximation is imposed, the approach remains accurate even for quasi-transverse-magnetic/electric modes of low finite azimuthal mode order. The approach's generality and utility are demonstrated by modeling several nontrivial structures, i.e., 1) two different optical microcavities (one toroidal made of silica, the other an AlGaAs microdisk), 2) a third-order sapphire:air Bragg cavity, and 3) two different cryogenic sapphire WG-mode resonators; both 2) and 3) operate in the microwave X-band. By fitting one of 3) to a set of measured resonance frequencies, the dielectric constants of sapphire at liquid-helium temperature have been estimated.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 6 )