By Topic

Ferroelectric Ultra High-Density Data Storage Based on Scanning Nonlinear Dielectric Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cho, Yasuo ; Res. Inst. of Electr. Commun., Tohoku Univ., Sendai ; Hashimoto, Sunao ; Odagawa, Nozomi ; Tanaka, Kenkou
more authors

Nano-sized inverted domain dots in ferroelectric materials have potential application in ultrahigh-density rewritable data storage systems. Herein, a data storage system is presented based on scanning non-linear dielectric microscopy and a thin film of ferroelectric single-crystal lithium tantalite. Through domain engineering, we succeeded to form an smallest artificial nano-domain single dot of 5.1 nm in diameter and artificial nano-domain dot-array with a memory density of 10.1 Tbit/inch2 and a bit spacing of 8.0 nm, representing the highest memory density for rewritable data storage reported to date. Sub-nanosecond (500 psec) domain switching speed also has been achieved. Next, long term retention characteristic of data with inverted domain dots is investigated by conducting heat treatment test. Obtained life time of inverted dot with the radius of 50 nm was 16.9 years at 80degC. Finally, actual information storage with low bit error and high memory density was performed. A bit error ratio of less than 1times 10-4 was achieved at an areal density of 258 Gbit/inch2. Moreover, actual information storage is demonstrated at a density of 1 Tbit/inch2.

Published in:

Non-Volatile Memory Technology Symposium, 2006. NVMTS 2006. 7th Annual

Date of Conference:

5-8 Nov. 2006