Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Software and Algorithms for Graph Queries on Multithreaded Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Search-based graph queries, such as finding short paths and isomorphic subgraphs, are dominated by memory latency. If input graphs can be partitioned appropriately, large cluster-based computing platforms can run these queries. However, the lack of compute-bound processing at each vertex of the input graph and the constant need to retrieve neighbors implies low processor utilization. Furthermore, graph classes such as scale-free social networks lack the locality to make partitioning clearly effective. Massive multithreading is an alternative architectural paradigm, in which a large shared memory is combined with processors that have extra hardware to support many thread contexts. The processor speed is typically slower than normal, and there is no data cache. Rather than mitigating memory latency, multithreaded machines tolerate it. This paradigm is well aligned with the problem of graph search, as the high ratio of memory requests to computation can be tolerated via multithreading. In this paper, we introduce the multithreaded graph library (MTGL), generic graph query software for processing semantic graphs on multithreaded computers. This library currently runs on serial machines and the Cray MTA-2, but Sandia is developing a run-time system that will make it possible to run MTGL-based code on symmetric multiprocessors. We also introduce a multithreaded algorithm for connected components and a new heuristic for inexact subgraph isomorphism We explore the performance of these and other basic graph algorithms on large scale-free graphs. We conclude with a performance comparison between the Cray MTA-2 and Blue Gene/Light for s-t connectivity.

Published in:

Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International

Date of Conference:

26-30 March 2007