By Topic

SWARM: A Parallel Programming Framework for Multicore Processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bader, D.A. ; Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA ; Kanade, V. ; Madduri, K.

Due to fundamental physical limitations and power constraints, we are witnessing a radical change in commodity microprocessor architectures to multicore designs. Continued performance on multicore processors now requires the exploitation of concurrency at the algorithmic level. In this paper, we identify key issues in algorithm design for multicore processors and propose a computational model for these systems. We introduce SWARM (software and algorithms for running on multi-core), a portable open-source parallel library of basic primitives that fully exploit multicore processors. Using this framework, we have implemented efficient parallel algorithms for important primitive operations such as prefix-sums, pointer-jumping, symmetry breaking, and list ranking; for combinatorial problems such as sorting and selection; for parallel graph theoretic algorithms such as spanning tree, minimum spanning tree, graph decomposition, and tree contraction; and for computational genomics applications such as maximum parsimony. The main contributions of this paper are the design of the SWARM multicore framework, the presentation of a multicore algorithmic model, and validation results for this model. SWARM is freely available as open-source from

Published in:

Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International

Date of Conference:

26-30 March 2007