By Topic

Load Balancing of Parallel Simulated Annealing on a Temporally Heterogeneous Cluster of Workstations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moharil, S. ; Dept. of Electr. & Comput. Eng., Auburn Univ., AL ; Soo-Young Lee

Simulated annealing (SA) is a general-purpose optimization technique widely used in various combinatorial optimization problems. However, the main drawback of this technique is a long computation time required to obtain a good quality of solution. Clusters have emerged as a feasible and popular platform for parallel computing in many applications. Computing nodes on many of the clusters available today are temporally heterogeneous. In this study, multiple Markov chain (MMC) parallel simulated annealing (PSA) algorithms have been implemented on a temporally heterogeneous cluster of workstations to solve the graph partitioning problem and their performance has been analyzed in detail. Temporal heterogeneity of a cluster of workstations is harnessed by employing static and dynamic load balancing techniques to further improve efficiency and scalability of the MMC PSA algorithms.

Published in:

Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International

Date of Conference:

26-30 March 2007