Cart (Loading....) | Create Account
Close category search window
 

Efficient Statistical Performance Modeling for Autonomic, Service-Oriented Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rui Zhang ; Comput. Lab., Oxford Univ. ; Bivens, A. ; Rezek, I.

As service-oriented environments grow in size and complexity, managing their performance becomes increasingly difficult. To assist administrators, autonomic techniques have been adopted to permit these environments to be self-managing (problem localization, workload management, etc.). These techniques need a sense of system state and the ability to project a new state given some change within the environment. Recent work addressing this issue frequently used statistically learned models which were derived entirely from data. However, many environments already have management facilities in place that could provide precise and useful insights (e.g. workflows) into the system. This paper introduces a method of modeling service-oriented system performance using Bayesian networks and specifically addresses the benefits obtained by incorporating these insights into the model learning process. To further minimize model building costs, we devise a decentralized method to concurrently learn parts of the model where knowledge inclusion is impossible. Simulations and applications in actual environments show significant reductions in learning time, better accuracy and stronger tolerance to small learning data sets.

Published in:

Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International

Date of Conference:

26-30 March 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.