By Topic

Nonuniformly Communicating Noncontiguous Data: A Case Study with PETSc and MPI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
P. Balaji ; Mathematics and Computer Science Division, Argonne National Laboratory, ; D. Buntinas ; S. Balay ; B. Smith
more authors

Due to the complexity associated with developing parallel applications, scientists and engineers rely on high-level software libraries such as PETSc, ScaLAPACK and PESSL to ease this task. Such libraries assist developers by providing abstractions for mathematical operations, data representation and management of parallel layouts of the data, while internally using communication libraries such as MPI and PVM. With high-level libraries managing data layout and communication internally, it can be expected that they organize application data suitably for performing the library operations optimally. However, this places additional overhead on the underlying communication library by making the data layout noncontiguous in memory and communication volumes (data transferred by a process to each of the other processes) nonuniform. In this paper, we analyze the overheads associated with these two aspects (noncontiguous data layouts and nonuniform communication volumes) in the context of the PETSc software toolkit over the MPI communication library. We describe the issues with the current approaches used by MPICH2 (an implementation of MPI), propose different approaches to handle these issues and evaluate these approaches with micro-benchmarks as well as an application over the PETSc software library. Our experimental results demonstrate close to an order of magnitude improvement in the performance of a 3-D Laplacian multi-grid solver application when evaluated on a 128 processor cluster.

Published in:

2007 IEEE International Parallel and Distributed Processing Symposium

Date of Conference:

26-30 March 2007