By Topic

Almost Peer-to-Peer Clock Synchronization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sobeih, A. ; Dept. of Comput. Sci., Illinois Univ., Urbana, IL ; Hack, M. ; Zhen Liu ; Li Zhang

In this paper, an almost peer-to-peer (AP2P) clock synchronization protocol is proposed. AP2P is almost peer-to-peer in the sense that it provides the desirable features of a purely hierarchical (client/server) clock synchronization protocol while avoiding the undesirable consequences of a purely peer-to-peer one. In AP2P, a unique node is elected as a leader in a distributed manner. Each non-leader node adjusts its clock rate based on message exchanges with its neighbors, taking into consideration that neighbors that are closer to the leader have more effect on the adjustment than the neighbors that are further away from the leader. We compare the performance of AP2P with that of the server time protocol (STP), which is a purely hierarchical clock synchronization protocol. Simulation results, which have been conducted on several network topologies, have shown that AP2P can provide a clock synchronization accuracy that is indistinguishable from that of STP. Furthermore, AP2P is more fault-tolerant because it can recover from certain types of failures that STP cannot recover from.

Published in:

Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International

Date of Conference:

26-30 March 2007