By Topic

Acoustic characterization and prediction of the cut-off dimensionless frequency of an elastic tube by neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dariouchv, A. ; Fac. des Sci., Universite Ibn Zohr, Agadir ; Aassif, E.H. ; Decultot, D. ; Maze, G.

A neural network is developed to predict cut-off dimensionless frequencies of the antisymmetric circumferential waves (Ai) propagating around an elastic circular cylindrical shell of different radius ratio b/a (a, outer radius; b, inner radius). The useful data to train and test the performances of the model are determinated from calculated trajectories of natural modes of resonances or extracted from time-frequency representations of Wigner-Ville of the acoustic backscattered time signal obtained from a computation. In this work, the studied tubes are made of aluminum or stainless steel. The material density, the radius ratio b/a, the index i of the antisymmetric waves, and the propagation velocities in the tube, are selected like relevant entries of the model of neural network. During the development of the network, several configurations are evaluated. The optimal model selected is a network with two hidden layers. This model is able to predict the cut-off dimensionless frequencies with a mean relative error (MRE) of about 1%, a mean absolute error (MAE) of 3.10-3 k 1a, and a standard error (SE) of 10-3 k1a(k1a is the dimensionless frequency, k1 is the wave number in water)

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:54 ,  Issue: 5 )