By Topic

A Game-Theoretic Approach to Competitive Spectrum Sharing in Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dusit Niyato ; Dept. of Elect. & Comp. Eng., Manitoba Univ., Winnipeg, Man. ; Ekram Hossain

"Cognitive radio" is an emerging technique to improve the utilization of radio frequency spectrum in wireless networks. In this paper, we consider the problem of spectrum sharing among a primary user and multiple secondary users. We formulate this problem as an oligopoly market competition and use a Cournot game to obtain the spectrum allocation for secondary users. Nash equilibrium is considered as the solution of this game. We first present the formulation of a static Cournot game for the case when all secondary users can observe the adopted strategies and the payoff of each other. However, this assumption may not be realistic in some cognitive radio systems. Therefore, we formulate a dynamic Cournot game in which the strategy of one secondary user is selected solely based on the pricing information obtained from the primary user. The stability condition of the dynamic behavior for this spectrum sharing scheme is investigated.

Published in:

2007 IEEE Wireless Communications and Networking Conference

Date of Conference:

11-15 March 2007