By Topic

Prediction of Stock Price Movements Based on Concept Map Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Soni, A. ; Dept. of Comput. Sci., Indian Inst. of Technol. Kanpur ; van Eck, N.J. ; Kaymak, U.

Visualization of textual data may reveal interesting properties regarding the information conveyed in a group of documents. In this paper, we study whether the structure revealed by a visualization method can be used as inputs for improved classifiers. In particular, we study whether the locations of news items on a concept map could be used as inputs for improving the prediction of stock price movements from the news. We propose a method based on information visualization and text classification for achieving this. We apply the proposed approach to the prediction of the stock price movements of companies within the oil and natural gas sector. In a case study, we show that our proposed approach performs better than a naive approach and a bag-of-words approach

Published in:

Computational Intelligence in Multicriteria Decision Making, IEEE Symposium on

Date of Conference:

1-5 April 2007