By Topic

High Performance Medical Image Registration Using a Distributed Blackboard Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tait, R.J. ; Sch. of Comput. & Informatics, Nottingham Trent Univ. ; Schaefer, G. ; Hopgood, A.A. ; Nakashima, T.

A major drawback of medical image registration techniques is the performance bottleneck associated with similarity computation. Such bottlenecks limit registration applications in situations where fast execution times are required. In this paper a novel framework for high performance intensity-based medical image registration is presented. Geometric alignment of both reference and sensed images is achieved through a combination of scaling, translation, and rotation. Crucially, similarity computation is performed intelligently by knowledge sources (KSs) organised in a worker/manager model. The KSs work in parallel and communicate with each other by means of a distributed blackboard architecture. Partitioning of the blackboard is used to balance communication and processing workloads. The registration framework presented demonstrates the flexibility of the coarse-grained parallelism employed and shows how high performance medical image registration can be achieved with non-specialised architectures. Experimental results obtained during testing show that substantial speedups can be achieved

Published in:

Computational Intelligence in Image and Signal Processing, 2007. CIISP 2007. IEEE Symposium on

Date of Conference:

1-5 April 2007