By Topic

Computational Intelligence for Automated Keg Identification and Deformnation Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Campbell, D. ; Sch. of Eng. Syst., Queensland Univ. of Technol., Brisbane, Qld. ; Keir, A. ; Lees, M.

A machine vision based keg inspection system can allow cost effective keg tracking and preventative maintenance programs to be implemented, leading to substantial savings for breweries with large keg fleets. A robust keg serial number recognition and keg condition assessment process is required to cater for different keg brands and a range of keg ages in the fleet. It has been demonstrated that the proposed image processing methodology, and neural network based number recognition system, successfully located and identified keg serial numbers with a 92% digit accuracy. Furthermore, the vision system allowed the concurrent assessment of the keg condition by assessing deformity of the keg rim, and that of the filler valve. A correlation coefficient, generated using a template matching process, proved to be a suitable metric which adequately indicated rims within and outside acceptable deformity bounds

Published in:

Computational Intelligence in Image and Signal Processing, 2007. CIISP 2007. IEEE Symposium on

Date of Conference:

1-5 April 2007