Cart (Loading....) | Create Account
Close category search window
 

SSM : A Frequent Sequential Data Stream Patterns Miner

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ezeife, C.I. ; Sch. of Comput. Sci., Windsor Univ., Ont. ; Monwar, M.

Data stream applications like sensor network data, click stream data, have data arriving continuously at high speed rates and require online mining process capable of delivering current and near accurate results on demand without full access to all historical stored data. Frequent sequential mining is the process of discovering frequent sequential patterns in data sequences as found in applications like Web log access sequences. Mining frequent sequential patterns on data stream applications contend with many challenges such as limited memory for unlimited data, inability of algorithms to scan infinitely flowing original dataset more than once and to deliver current and accurate result on demand. Existing work on mining frequent patterns on data streams are mostly for non-sequential patterns. This paper proposes SSM-algorithm (sequential stream mining-algorithm), that uses three types of data structures (D-List, PLWAP tree and FSP-tree) to handle the complexities of mining frequent sequential patterns in data streams. It summarizes frequency counts of items with the D-list, continuously builds PLWAP tree and mines frequent sequential patterns of batches of stream records, maintains mined frequent sequential patterns incrementally with FSP tree. The proposed algorithm can be deployed to analyze e-commerce data where the primary source of data is click stream data.

Published in:

Computational Intelligence and Data Mining, 2007. CIDM 2007. IEEE Symposium on

Date of Conference:

March 1 2007-April 5 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.