By Topic

Clustering Microarrays with Predictive Weighted Ensembles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Christine Smyth ; Statistics and Intelligent Data Analysis Group, School of Mathematics, Physics and Information Technology, James Cook University, Townsville, 4811, Australia ; Danny Coomans

Cluster ensembles seek a consensus across many individual partitions and the resulting solution is usually stable. Cluster ensembles are well suited to the analysis of DNA microarrays, where the tremendous size of the dataset can thwart the discovery of stable groups. Post processing cluster ensembles, where each individual partition is weighted according to its relative accuracy improves the performance of the ensemble whilst maintaining its stability. However, weighted cluster ensembles remain relatively unexplored, primarily because there are no common means of assessing the accuracy of individual clustering solutions. This paper describes a technique of creating weighted cluster ensembles suitable for use with microarray datasets. A regression technique is used to obtain individual cluster solutions. Each solution is then weighted according to its predictive accuracy. The consensus partition is obtained using a novel modification to the traditional k-means algorithm which further enforces the predictability of the solution. An estimate of the natural number of clusters can also be obtained using the modified k-means algorithm. Furthermore, a valuable byproduct of this weighted ensemble approach is a variable importance list. The methodology is applied on two well-known microarray datasets with promising results

Published in:

Computational Intelligence and Bioinformatics and Computational Biology, 2007. CIBCB '07. IEEE Symposium on

Date of Conference:

1-5 April 2007