By Topic

Hybrid Ant Colony Optimization Using Memetic Algorithm for Traveling Salesman Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haibin Duan ; Member, IEEE, School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100083, China; ; Xiufen Yu

Ant colony optimization was originally presented under the inspiration during collective behavior study results on real ant system, and it has strong robustness and easy to combine with other methods in optimization. Although ant colony optimization for the heuristic solution of hard combinational optimization problems enjoy a rapidly growing popularity, but little research is conducted on the optimum configuration strategy for the adjustable parameters in the ant colony optimization, and the performance of ant colony optimization depends on the appropriate setting of parameters which requires both human experience and luck to some extend. Memetic algorithm is a population-based heuristic search approach which can be used to solve combinatorial optimization problem based on cultural evolution. Based on the introduction of these two meta-heuristic algorithms, a novel kind of adjustable parameters configuration strategy based on memetic algorithm is developed in this paper, and the feasibility and effectiveness of this approach are also verified through the famous traveling salesman problem (TSP). This hybrid approach is also valid for other types of combinational optimization problems

Published in:

2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning

Date of Conference:

1-5 April 2007