By Topic

A Comprehensive Empirical Study of Count Models for Software Fault Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kehan Gao ; Dept. of Math. & Comput. Sci., Eastern Connecticut State Univ., Willimantic, CT ; Khoshgoftaar, T.M.

Count models, such as the Poisson regression model, and the negative binomial regression model, can be used to obtain software fault predictions. With the aid of such predictions, the development team can improve the quality of operational software. The zero-inflated, and hurdle count models may be more appropriate when, for a given software system, the number of modules with faults are very few. Related literature lacks quantitative guidance regarding the application of count models for software quality prediction. This study presents a comprehensive empirical investigation of eight count models in the context of software fault prediction. It includes comparative hypothesis testing, model selection, and performance evaluation for the count models with respect to different criteria. The case study presented is that of a full-scale industrial software system. It is observed that the information obtained from hypothesis testing, and model selection techniques was not consistent with the predictive performances of the count models. Moreover, the comparative analysis based on one criterion did not match that of another criterion. However, with respect to a given criterion, the performance of a count model is consistent for both the fit, and test data sets. This ensures that, if a fitted model is considered good based on a given criterion, then the model will yield a good prediction based on the same criterion. The relative performances of the eight models are evaluated based on a one-way anova model, and Tukey's multiple comparison technique. The comparative study is useful in selecting the best count model for estimating the quality of a given software system

Published in:

Reliability, IEEE Transactions on  (Volume:56 ,  Issue: 2 )