Cart (Loading....) | Create Account
Close category search window
 

Effects of the Thin-Film Metal Ground Embedded in On-Chip Microstrip Lines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lu Zhang ; Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA ; Jiming Song

This letter studies the influence of embedded thin-film metallization layers, normally designed as ground planes, upon the dispersive characteristics of multilayer microstrip lines. The spectral domain approach is used to analyze the effects of the metallization thickness as a design parameter in two structures: the thin-film microstrip line and metal-insulator-metal-insulator line. Numerical results indicate that the thin metallization layer can excite the slow-wave mode and change significantly the dispersive characteristics. Moreover, at low frequencies a local minimal attenuation can be achieved with certain metallization thickness. Thus, it is necessary to take into account this thin-film metal ground to achieve reliable numerical simulation from dc to millimeter-wave frequencies

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:17 ,  Issue: 6 )

Date of Publication:

June 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.