By Topic

Clustering-Based Adaptive Crossover and Mutation Probabilities for Genetic Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Zhang ; Dept. of Comput. Sci., Sun Yat-sen Univ, Guangzhou ; Chung, H.S.-H. ; Wai-Lun Lo

Research into adjusting the probabilities of crossover and mutation pm in genetic algorithms (GAs) is one of the most significant and promising areas in evolutionary computation. px and pm greatly determine whether the algorithm will find a near-optimum solution or whether it will find a solution efficiently. Instead of using fixed values of px and pm , this paper presents the use of fuzzy logic to adaptively adjust the values of px and pm in GA. By applying the K-means algorithm, distribution of the population in the search space is clustered in each generation. A fuzzy system is used to adjust the values of px and pm. It is based on considering the relative size of the cluster containing the best chromosome and the one containing the worst chromosome. The proposed method has been applied to optimize a buck regulator that requires satisfying several static and dynamic operational requirements. The optimized circuit component values, the regulator's performance, and the convergence rate in the training are favorably compared with the GA using fixed values of px and pm. The effectiveness of the fuzzy-controlled crossover and mutation probabilities is also demonstrated by optimizing eight multidimensional mathematical functions

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:11 ,  Issue: 3 )