By Topic

Finding Feasible Timetables Using Group-Based Operators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lewis, R. ; Centre for Emergent Comput., Napier Univ. of Edinburgh ; Paechter, B.

This paper describes the applicability of the so-called "grouping genetic algorithm" to a well-known version of the university course timetabling problem. We note that there are, in fact, various scaling up issues surrounding this sort of algorithm and, in particular, see that it behaves in quite different ways with different sized problem instances. As a by-product of these investigations, we introduce a method for measuring population diversities and distances between individuals with the grouping representation. We also look at how such an algorithm might be improved: first, through the introduction of a number of different fitness functions and, second, through the use of an additional stochastic local-search operator (making in effect a grouping memetic algorithm). In many cases, we notice that the best results are actually returned when the grouping genetic operators are removed altogether, thus highlighting many of the issues that are raised in the study

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:11 ,  Issue: 3 )