By Topic

Imperfect Evolutionary Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Graham Kendall ; Sch. of Comput. Sci. & Inf. Technol., Nottingham Univ. ; Yan Su

In this paper, we propose a change from a perfect paradigm to an imperfect paradigm in evolving intelligent systems. An imperfect evolutionary system (IES) is introduced as a new approach in an attempt to solve the problem of an intelligent system adapting to new challenges from its imperfect environment, with an emphasis on the incompleteness and continuity of intelligence. We define an IES as a system where intelligent individuals optimize their own utility, with the available resources, while adapting themselves to the new challenges from an evolving and imperfect environment. An individual and social learning paradigm (ISP) is presented as a general framework for developing IESs. A practical implementation of the ISP framework, an imperfect evolutionary market, is described. Through experimentation, we demonstrate the absorption of new information from an imperfect environment by artificial stock traders and the dissemination of new knowledge within an imperfect evolutionary market. Parameter sensitivity of the ISP framework is also studied by employing different levels of individual and social learning

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:11 ,  Issue: 3 )