By Topic

The Selective Random Subspace Predictor for Traffic Flow Forecasting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shiliang Sun ; Dept. of Autom., Tsinghua Univ., Beijing ; Changshui Zhang

Traffic flow forecasting is an important issue for the application of Intelligent Transportation Systems. Due to practical limitations, traffic flow data may be incomplete (partially missing or substantially contaminated by noises), which will aggravate the difficulties for traffic flow forecasting. In this paper, a new approach, termed the selective random subspace predictor (SRSP), is developed, which is capable of implementing traffic flow forecasting effectively whether incomplete data exist or not. It integrates the entire spatial and temporal traffic flow information in a transportation network to carry out traffic flow forecasting. To forecast the traffic flow at an object road link, the Pearson correlation coefficient is adopted to select some candidate input variables that compose the selective input space. Then, a number of subsets of the input variables in the selective input space are randomly selected to, respectively, serve as specific inputs for prediction. The multiple outputs are combined through a fusion methodology to make final decisions. Both theoretical analysis and experimental results demonstrate the effectiveness and robustness of the SRSP for traffic flow forecasting, whether for complete data or for incomplete data

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:8 ,  Issue: 2 )