By Topic

Road-Sign Detection and Recognition Based on Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Saturnino Maldonado-Bascon ; Departamento de Teorfa de la Senal y Comunicaciones, Univ. de Alcala, Madrid ; Sergio Lafuente-Arroyo ; Pedro Gil-Jimenez ; Hilario Gomez-Moreno
more authors

This paper presents an automatic road-sign detection and recognition system based on support vector machines (SVMs). In automatic traffic-sign maintenance and in a visual driver-assistance system, road-sign detection and recognition are two of the most important functions. Our system is able to detect and recognize circular, rectangular, triangular, and octagonal signs and, hence, covers all existing Spanish traffic-sign shapes. Road signs provide drivers important information and help them to drive more safely and more easily by guiding and warning them and thus regulating their actions. The proposed recognition system is based on the generalization properties of SVMs. The system consists of three stages: 1) segmentation according to the color of the pixel; 2) traffic-sign detection by shape classification using linear SVMs; and 3) content recognition based on Gaussian-kernel SVMs. Because of the used segmentation stage by red, blue, yellow, white, or combinations of these colors, all traffic signs can be detected, and some of them can be detected by several colors. Results show a high success rate and a very low amount of false positives in the final recognition stage. From these results, we can conclude that the proposed algorithm is invariant to translation, rotation, scale, and, in many situations, even to partial occlusions

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:8 ,  Issue: 2 )