Cart (Loading....) | Create Account
Close category search window
 

Multiairport Capacity Management: Genetic Algorithm With Receding Horizon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiao-Bing Hu ; Dept. of Informatics, Sussex Univ., Brighton ; Wen-Hua Chen ; Di Paolo, E.

The inability of airport capacity to meet the growing air traffic demand is a major cause of congestion and costly delays. Airport capacity management (ACM) in a dynamic environment is crucial for the optimal operation of an airport. This paper reports on a novel method to attack this dynamic problem by integrating the concept of receding horizon control (RHC) into a genetic algorithm (GA). A mathematical model is set up for the dynamic ACM problem in a multiairport system where flights can be redirected between airports. A GA is then designed from an RHC point of view. Special attention is paid on how to choose those parameters related to the receding horizon and terminal penalty. A simulation study shows that the new RHC-based GA proposed in this paper is effective and efficient to solve the ACM problem in a dynamic multiairport environment

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:8 ,  Issue: 2 )

Date of Publication:

June 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.