By Topic

Road Selection Using Multicriteria Fusion for the Road-Matching Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maan El Badaoui El Najjar ; LAGIS Lab., Univ. des Sci. et Technol. de Lille, Villeneuve d'Ascq ; Philippe Bonnifait

This paper presents a road selection strategy for novel road-matching methods that are designed to support real-time navigational features within Advanced Driving-Assistance Systems (ADAS). Selecting the most likely segment(s) is a crucial issue for the road-matching problem. The selection strategy merges several criteria using Belief theory. Particular attention is given to the development of belief functions from measurements and estimations of relative distances, headings, and velocities. Experimental results using data from antilock brake system sensors, the differential Global Positioning System receiver, and the accurate digital roadmap illustrate the performances of this approach, particularly in ambiguous situations

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:8 ,  Issue: 2 )