By Topic

Maximum Freedom Last Scheduling Algorithm for Downlinks of DSRC Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chung-Ju Chang ; Dept. of Commun. Eng., Nat. Chiao Tung Univ., Hsinchu ; Ray-Guang Cheng ; Hao-Tang Shih ; Yih-Shen Chen

This paper proposes a maximum freedom last (MFL) scheduling algorithm for downlinks, from the roadside unit to the onboard unit (OBU), of dedicated short-range communication networks in intelligent transportation systems, to minimize the system handoff rate under the maximum tolerable delay constraint. The MFL scheduling algorithm schedules the service ordering of OBUs according to their degree of freedom, which is determined by factors such as remaining dwell time of service channel, remaining transmission time, queueing delay, and maximum tolerable delay. The algorithm gives the smallest chance of service to the OBU with the largest remaining dwell time, the smallest remaining transmission time, and the largest weighting factor, which is a function of the queueing delay and the maximum tolerable delay. Simulation results show that the MFL scheduling algorithm outperforms the traditional first-come-first-serve and earliest-deadline-first methods in terms of service failure and system handoff rates

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:8 ,  Issue: 2 )