Cart (Loading....) | Create Account
Close category search window
 

A Discriminative Training Framework using N-Best Speech Recognition Transcriptions and Scores for Spoken Utterance Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yaman, S. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Li Deng ; Dong Yu ; Ye-Yi Wang
more authors

In this paper, we propose a novel discriminative training approach to spoken utterance classification (SUC). The ultimate objective of the SUC task, originally developed to map a spoken speech utterance into the most appropriate semantic class, is to minimize the classification error rate (CER). Conventionally, a two-phase approach is adapted, in which the first phase is the ASR transcription phase, and the second phase is the semantic classification phase. In the proposed framework, the classification error rate is approximated as differentiable functions of the language and classifier model parameters. Furthermore, in order to exploit all the available information from the first phase, class-specific discriminant functions are defined based on score functions derived from the N-best lists. Our experimental results on the standard ATIS database indicate a notable reduction in CER from the earlier best result on the identical task. The proposed framework achieved a reduction of CER from 4.92% to 4.04%.

Published in:

Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on  (Volume:4 )

Date of Conference:

15-20 April 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.