By Topic

Systolic array processing of the Viterbi algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chang, C.-Y. ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; Yao, K.

Results on efficient forms of decoding convolutional codes based on the Viterbi algorithm by using systolic arrays are presented. Various properties of convolutional codes are discussed. A technique called strongly connected trellis decoding is introduced to increase the efficient utilization of all the systolic array processors. Issues dealing with the composite branch metric generation, survivor updating, overall system architecture, throughput rate, and computational overhead ratio are also investigated. The scheme is applicable to both hard and soft decoding of any rate b/n convolutional code. It is shown that as the length of the code becomes large, the systolic Viterbi decoder maintains a regular and general interconnection structure as well as moderate throughput rate gain over the sequential Viterbi decoder

Published in:

Information Theory, IEEE Transactions on  (Volume:35 ,  Issue: 1 )