Cart (Loading....) | Create Account
Close category search window
 

A New Two-Stage Approach to Underdetermined Blind Source Separation using Sparse Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Zhang ; Sch. of Inf. Sci. & Eng., Shandong Univ., Jinan, China ; Ju Liu ; Jiande Sun ; Shuzhong Bai

In this paper we focus on the two-stage underdetermined blind source separation (BSS), which consists of the mixing matrix estimation stage, the first stage, and the source estimation stage, the second stage. In the first stage, both the mixing matrix and the number of sources are estimated by a new potential-function-based clustering method using a new potential function constructed by Laplacian-like window function. In the second stage, in order to overcome the disadvantage of 11-norm solution, a new sparse representation based on high-order statistics in transformed domain, which is called statistically sparse component analysis (SSCA), is proposed to recover the sources. Compared with the existing two-stage methods, the proposed approach can achieve higher reconstructed signal-to-noise ratios (SNRs).

Published in:

Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on  (Volume:3 )

Date of Conference:

15-20 April 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.