By Topic

An Artificial Neural Network for Quality Assessment in Wireless Imaging Based on Extraction of Structural Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Engelke, U. ; Blekinge Inst. of Technol., Sweden ; Zepernick, H.

In digital transmission, images may undergo quality degradation due to lossy compression and error-prone channels. Efficient measurement tools are needed to quantify induced distortions and to predict their impact on perceived quality. In this paper, an artificial neural network (ANN) is proposed for perceptual image quality assessment. The quality prediction is based on structural image features such as blocking, blur, image activity, and intensity masking. Training and testing of the ANN is performed with reference to subjective experiments and the obtained mean opinion scores (MOS). It is shown that the proposed ANN is capable of predicting MOS over a wide range of image distortions. This applies to both cases, when reference information about the structure of the original image is available to the ANN but also in absence of this knowledge. The considered ANN would therefore be well suited for combination with link adaption techniques.

Published in:

Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on  (Volume:1 )

Date of Conference:

15-20 April 2007