By Topic

Affine Prediction as a Post Processing Stage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kordasiewicz, R.C. ; McMaster Univ., Hamilton, Ont., Canada ; Gallant, M.D. ; Shirani, S.

Translational motion vectors (MV)s and macro block (MB) frame partitioning are the predominant means of motion estimation (ME) and motion compensation (MC). However, the translational motion model does not describe sufficiently complex motion such as rotation, zoom or shearing. To remedy this one can start computing more advanced motion parameters and/or partition the frame differently. However these approaches are either very computationally expensive and/or have limited search ranges. Thus, in this paper we propose a novel post processing stage which can be easily incorporated into most of the current coders. This stage generates the predictor for each inter MB, based on an affine motion model using translational motion vectors. Our approach has very low computational complexity, however average PSNR gains of up to 0.6 dB were realized for video sequences with complex motion.

Published in:

Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on  (Volume:1 )

Date of Conference:

15-20 April 2007