By Topic

Identification via channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ahlswede, R. ; Bielefeld Univ., West Germany ; Dueck, G.

The authors' main finding is that any object among doubly exponentially many objects can be identified in blocklength n with arbitrarily small error probability via a discrete memoryless channel (DMC), if randomization can be used for the encoding procedure. A novel doubly exponential coding theorem is presented which determines the optimal R, that is, the identification capacity of the DMC as a function of its transmission probability matrix. This identification capacity is a well-known quantity, namely, Shannon's transmission capacity for the DMC

Published in:

Information Theory, IEEE Transactions on  (Volume:35 ,  Issue: 1 )