By Topic

New Recommendation Techniques for Multicriteria Rating Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Adomavicius, G. ; Minnesota Univ., Minneapolis, MN ; YoungOk Kwon

Personalization technologies and recommender systems help online consumers avoid information overload by making suggestions regarding which information is most relevant to them. Most online shopping sites and many other applications now use recommender systems. Two new recommendation techniques leverage multicriteria ratings and improve recommendation accuracy as compared with single-rating recommendation approaches. Taking full advantage of multicriteria ratings in personalization applications requires new recommendation techniques. In this article, we propose several new techniques for extending recommendation technologies to incorporate and leverage multicriteria rating information.

Published in:

Intelligent Systems, IEEE  (Volume:22 ,  Issue: 3 )