Cart (Loading....) | Create Account
Close category search window
 

Efficient Computation of Iceberg Cubes by Bounding Aggregate Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The iceberg cubing problem is to compute the multidimensional group-by partitions that satisfy given aggregation constraints. Pruning unproductive computation for iceberg cubing when nonantimonotone constraints are present is a great challenge because the aggregate functions do not increase or decrease monotonically along the subset relationship between partitions. In this paper, we propose a novel bound prune cubing (BP-Cubing) approach for iceberg cubing with nonantimonotone aggregation constraints. Given a cube over n dimensions, an aggregate for any group-by partition can be computed from aggregates for the most specific n--dimensional partitions (MSPs). The largest and smallest aggregate values computed this way become the bounds for all partitions in the cube. We provide efficient methods to compute tight bounds for base aggregate functions and, more interestingly, arithmetic expressions thereof, from bounds of aggregates over the MSPs. Our methods produce tighter bounds than those obtained by previous approaches. We present iceberg cubing algorithms that combine bounding with efficient aggregation strategies. Our experiments on real-world and artificial benchmark data sets demonstrate that BP-Cubing algorithms achieve more effective pruning and are several times faster than state-of-the-art iceberg cubing algorithms and that BP-Cubing achieves the best performance with the top-down cubing approach.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 7 )

Date of Publication:

July 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.