By Topic

On the Memory Access Patterns of Supercomputer Applications: Benchmark Selection and Its Implications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Murphy, R.C. ; Sandia Nat. Labs., Albuquerque ; Kogge, P.M.

This paper compares the system performance evaluation cooperative (SPEC) Integer and Floating-Point suites to a set of real-world applications for high-performance computing at Sandia National Laboratories. These applications focus on the high-end scientific and engineering domains; however, the techniques presented in this paper are applicable to any application domain. The applications are compared in terms of three memory properties: 1) temporal locality (or reuse over time), 2) spatial locality (or the use of data "near" data that has already been accessed), and 3) data intensiveness (or the number of unique bytes the application accesses). The results show that real-world applications exhibit significantly less spatial locality, often exhibit less temporal locality, and have much larger data sets than the SPEC benchmark suite. They further quantitatively demonstrate the memory properties of real supercomputing applications.

Published in:

Computers, IEEE Transactions on  (Volume:56 ,  Issue: 7 )