Cart (Loading....) | Create Account
Close category search window
 

Aloha-Based MAC Protocols with Collision Avoidance for Underwater Acoustic Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chirdchoo, N. ; Nat. Univ. of Singapore, Singapore ; Wee-Seng Soh ; Kee Chaing Chua

Unlike terrestrial networks that mainly rely on radio waves for communications, underwater networks utilize acoustic waves, which have comparatively lower loss and longer range in underwater environments. However, the use of acoustic waves pose a new research challenge in the networking area. While existing network schemes for terrestrial sensor networks are mainly designed for negligible propagation delay and high data rate, underwater acoustic communications are characterized by high propagation delay and low data rate. These terrestrial schemes, when directly applied to the underwater channel, will under-utilize its already limited capacity. We investigate how the underwater channel's throughput may be enhanced via medium access control (MAC) techniques that consider its unique characteristics. Specifically, we study the performance of Aloha-based protocols in underwater networks, and propose two enhanced schemes, namely, Aloha with collision avoidance (Aloha-CA), and Aloha with advance notification (Aloha-AN), which are capable of using the long propagation delays to their advantage. Simulation results have shown that both schemes can boost the throughput by reducing the number of collisions, and, for the case of Aloha-AN, also by significantly reducing the number of unproductive transmissions.

Published in:

INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE

Date of Conference:

6-12 May 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.