By Topic

A Performance Study of Deployment Factors in Wireless Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Robinson, J. ; Rice Univ., Houston ; Knightly, E.W.

We present a measurement-parameterized performance study of deployment factors in wireless mesh networks using three performance metrics: client coverage area, backhaul tier connectivity, and fair mesh capacity. For each metric, we identify and study topology factors and architectural features which strongly influence mesh performance via an extensive set of Monte Carlo simulations capturing realistic physical layer behavior. Our findings include: (i) A random topology is unsuitable for a large-scale mesh deployment due to doubled node density requirements, yet a moderate level of perturbations from ideal grid placement has a minor impact on performance. (ii) Multiple backhaul radios per mesh node is a cost-effective deployment strategy as it leads to mesh deployments costing 50% less than with a single-radio architecture, (iii) Dividing access and backhaul connections onto two separate radios does not use the second radio efficiently as it only improves fair mesh capacity 40% to 80% for most users. This is in contrast to using the second radio to move half the user population to a new network operated on the second radio. This work adds to the understanding of mesh deployment factors and their general impact on performance, providing further insight into practical mesh deployments.

Published in:

INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE

Date of Conference:

6-12 May 2007