By Topic

Multivariate Online Anomaly Detection Using Kernel Recursive Least Squares

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ahmed, T. ; McGill Univ. Montreal, Montreal ; Coates, M. ; Lakhina, A.

High-speed backbones are regularly affected by various kinds of network anomalies, ranging from malicious attacks to harmless large data transfers. Different types of anomalies affect the network in different ways, and it is difficult to know a priori how a potential anomaly will exhibit itself in traffic statistics. In this paper we describe an online, sequential, anomaly detection algorithm, that is suitable for use with multivariate data. The proposed algorithm is based on the kernel version of the recursive least squares algorithm. It assumes no model for network traffic or anomalies, and constructs and adapts a dictionary of features that approximately spans the subspace of normal behaviour. The algorithm raises an alarm immediately upon encountering a deviation from the norm. Through comparison with existing block-based offline methods based upon Principal Component Analysis, we demonstrate that our online algorithm is equally effective but has much faster time-to-detection and lower computational complexity. We also explore minimum volume set approaches in identifying the region of normality.

Published in:

INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE

Date of Conference:

6-12 May 2007