Cart (Loading....) | Create Account
Close category search window
 

Interference Mitigation Through Power Control in High Density 802.11 WLANs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The low cost and the ease of deployment of WiFi devices, as well as the need to support high bandwidth applications over 802.11 WLANs has led to the emergence of high density 802.11 networks in urban areas and enterprises. High density wireless networks, by design, face significant challenges due to increased interference resulting from the close proximity of co-channel cells. We demonstrate that power control can be used to mitigate interference in such an environment. It is well-known that variable transmit powers result in asymmetric links in the network, and can potentially lead to throughput starvation of some nodes. We first show that in order to perform starvation-free power control in 802.11 networks, a cross-layer approach is required, whereby the transmit powers and the carrier sensing parameter of the MAC layer of the nodes should be jointly tuned. We then propose a framework that determines optimum settings for these parameters with the objective of maximizing the network-wide throughput for elastic traffic. Within this framework, we devise a distributed power control algorithm that uses a Gibbs sampler. OPNET simulations and experiments over a proof of concept testbed demonstrate that in a dense network the proposed power control algorithm yields significant improvement in client throughput.

Published in:

INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE

Date of Conference:

6-12 May 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.