By Topic

An Accurate Link Model and Its Application to Stability Analysis of FAST TCP

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ao Tang ; California Inst. of Technol., Pasadena ; Jacobsson, K. ; Andrew, L.L.H. ; Low, S.H.

This paper presents a link model which captures the queue dynamics when congestion windows of TCP sources change. By considering both the self-clocking and the link integrator effects, the model is a generalization of existing models and is shown to be more accurate by both open loop and closed loop packet level simulations. It reduces to the known static link model when flows' round trip delays are similar, and approximates the standard integrator link model when the heterogeneity of round trip delays is significant. We then apply this model to the stability analysis of FAST TCP. It is shown that FAST TCP flows over a single link are always linearly stable regardless of delay distribution. This result resolves the notable discrepancy between empirical observations and previous theoretical predictions. The analysis highlights the critical role of self-clocking in TCP stability and the scalability of FAST TCP with respect to delay. The proof technique is new and less conservative than the existing ones.

Published in:

INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE

Date of Conference:

6-12 May 2007