By Topic

QoS-Driven Power Allocation Over Parallel Fading Channels With Imperfect Channel Estimations in Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jia Tang ; Texas A&M Univ., College Station ; Xi Zhang

We propose the quality-of-service (QoS) driven power allocation schemes for parallel fading channels when considering imperfect channel estimations. In particular, the parallel communication model plays a fundamental role in physical-layer evolutions of wireless networks. By integrating information theory with the concept of effective capacity, our proposed schemes aim at maximizing the system throughput subject to a given delay constraint. Solving the original non-convex problem by a 2-dimensional convex optimization approach, we develop the optimal allocation algorithms under different QoS and power constraints. Consistent with our previous work assuming perfect channel state information (CSI), our analyses considering imperfect CSI demonstrate that when the QoS constraint becomes more and more stringent, the optimal effective capacity decreases from the ergodic capacity to the zero-outage capacity. Moreover, our results indicate that the channel estimation error has a significant impact on QoS provisioning, especially when the delay constraint is stringent. Specifically, as long as the channel estimation is not perfect, a positive zero-outage capacity is unattainable. On the other hand, our simulations also suggest that a larger number of parallel channels can provide higher throughput and more stringent QoS, while offering better robustness against the imperfectness of CSI.

Published in:

INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE

Date of Conference:

6-12 May 2007