Cart (Loading....) | Create Account
Close category search window

The Electrical Properties of Unidirectional Metal-Induced Lateral Crystallized Polycrystalline-Silicon Thin-Film Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

It has been known that adjacent Pd enhances the crystallization rate in Ni metal-induced lateral crystallization (Ni-MILC) and this knowledge has been used to fabricate the unidirectional MILC thin-film transistors (TFTs), which eliminate the boundary formed at the center of TFT channel in a normal MILC TFTs. It is discovered that the MILC/MILC boundary (MMB) is responsible for the high leakage current and low field- effect mobility. The electrical properties of unidirectional MILC TFTs (Width/Length = 10/10 mum) improved considerably comparing to those of MILC TFTs containing the MMB. The leakage current and field-effect mobility, which have been regarded as obstacles for industrialization of the MILC process, measure to be 2.1 X 10-11 A and 83 cm2/ V ldr s, respectively.

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 6 )

Date of Publication:

June 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.