Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

SrCaO Protective Layer for High-Efficiency PDPs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The sustain pulse voltage of the panel for 66-kPa Ne + Xe (5%-30%) is 20%-40% lower with a Sr0.62Ca0.38O protective layer than with a MgO protective layer. At a normal sustain voltage of 160-200 V, the luminous efficiency of the panel with the Sr0.62 Ca0.38O protective layer for Xe (30%) is about twice as high as with the MgO protective layer for Xe (10%). The luminances of these panels are almost the same. This high efficiency at normal sustain pulse voltage and normal luminance is obtained through the combined use of the Sr0.62Ca0.38O protective layer and high Xe content. With regard to ion bombardment, the Sr0.62Ca0.38O film has a 4.5 times longer life than SrO film and nearly 80% of the life of MgO film. We also calculated the values of theoretical secondary electron emission yield gammaimin of MgO, SrO, and CaO without energy bands in the band gap for rare gas ions and found that [ gammaimin of MgO] les [gammaimin of CaO] < [gammaimin of SrO] except for the one case with He. The breakdown voltage decreases with higher gammaimin values. As expected, the discharge voltage of the panel is much lower with the SrO protective layer than with the MgO protective layer. The discharge voltages of the panels with Sr0.62Ca0.38O and SrO protective layers are almost the same. These findings show that the life of the SrO protective layer can be made 4.5 times longer without any increase in the discharge voltage by adding CaO (40 at.%)

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 6 )