By Topic

Root Cause of Charge Loss in a Nitride-Based Localized Trapping Memory Cell

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Data retention loss mechanisms in nitride-based localized trapping memory devices are investigated with various electrical measurements and Medici simulations. First, the effect of program and erase cycles on device behavior is determined in terms of bottom oxide degradation and nitride charge profile evolution. Even if a strong degradation of the interface is observed, there is no important impact of this degradation on the cell behavior. However, the nitride charge profile evolves with cycling and leads to a three-pole electron-hole-electron profile over the channel region. Second, the interface trap annealing, the tunneling through the bottom oxide, and the lateral redistribution are studied in order to determine which mechanism plays the main role in the threshold voltage shift after cycling. The retention performance is dominated by a lateral redistribution of charges in the nitride layer.

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 6 )