Cart (Loading....) | Create Account
Close category search window
 

Scalability of Stress Induced by Contact-Etch-Stop Layers: A Simulation Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Eneman, G. ; Interuniversity Microelectron. Center (IMEC), Leuven ; Verheyen, P. ; De Keersgieter, A. ; Jurczak, M.
more authors

This paper presents a study on the effectiveness of strained contact-etch-stop-layer (CESL) technologies in aggressively scaled dense structures. The focus is on nested transistors, which is a technologically very important structure that consists of a chain of gates on one active area. It will be shown that the two main channel stress components introduced by CESL, which are the vertical and parallel stresses, have a different sensitivity toward layout variations, which accordingly leads to different scaling guidelines to obtain a layout-insensitive strained CESL technology. Decreasing the CESL thickness is not enough for technology scaling; also, adapting the spacer dimensions is indispensable to scale a strained CESL technology from one technology node to the next.

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 6 )

Date of Publication:

June 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.