By Topic

Improvement of 4H-SiC Power p-i-n Diode Switching Performance Through Local Lifetime Control Using Boron Diffusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bolotnikov, A.V. ; South Carolina Univ., Columbia, SC ; Muzykov, P.G. ; Grekov, A.E. ; Sudarshan, T.S.

A comparison is carried out of the switching characteristics of 4H-SiC conventional p-i-n rectifiers, where the p-layer is formed by aluminum doping during epitaxial growth, with that of p-i-n diodes, where the p-layer is formed by codiffusion of aluminum and boron. It is demonstrated that p-i-n diodes that are produced by high-temperature diffusion exhibit better switching capability as compared to epigrown p-i-n diodes. The improved behavior is attributed to the reduced lifetime region that is created by the diffused boron layer. Also, the reduced lifetime region was implemented in a SiC conventional epitaxial p-i-n structure by boron diffusion through the epitaxial aluminum-doped p+ layer; the switching behavior of such a "hybrid" p-i-n diode is identical to that of the diffused one. The improvement of reverse-recovery characteristic is attributed to the effect of localized lifetime control by recombination centers that are created by diffused boron

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 6 )