Cart (Loading....) | Create Account
Close category search window

Quaternary Convolutional Codes From Linear Block Codes Over Galois Rings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

From a linear block code B over the Galois ring GR(4, m) with a k times n generator matrix and minimum Hamming distance d, a rate-k/n convolutional code over the ring Z4 with squared Euclidean free distance at least 2d and a nonrecursive encoder with memory at most m - 1 is constructed. When the generator matrix of B is systematic, the convolutional encoder is systematic, basic, noncatastrophic and minimal. Long codes constructed in this manner are shown to satisfy a Gilbert-Varshnmov bound.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 6 )

Date of Publication:

June 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.